Next: distrib, Previous: descriptive [Contents][Index]
lmの行列を対角に持つ平方行列を構成します。 lmは行列かスカラーのリストです。
例:
(%i1) load("diag")$ (%i2) a1:matrix([1,2,3],[0,4,5],[0,0,6])$ (%i3) a2:matrix([1,1],[1,0])$ (%i4) diag([a1,x,a2]); [ 1 2 3 0 0 0 ] [ ] [ 0 4 5 0 0 0 ] [ ] [ 0 0 6 0 0 0 ] (%o4) [ ] [ 0 0 0 x 0 0 ] [ ] [ 0 0 0 0 1 1 ] [ ] [ 0 0 0 0 1 0 ]
この関数を使うためには、最初にload("diag")
を書いてください。
固有値lambdaを持つ次数nのJordan細胞を返します。
例:
(%i1) load("diag")$ (%i2) JF(2,5); [ 2 1 0 0 0 ] [ ] [ 0 2 1 0 0 ] [ ] (%o2) [ 0 0 2 1 0 ] [ ] [ 0 0 0 2 1 ] [ ] [ 0 0 0 0 2 ] (%i3) JF(3,2); [ 3 1 ] (%o3) [ ] [ 0 3 ]
この関数を使うためには、最初にload("diag")
を書いてください。
行列matのJordan形を返しますが、それはMaximaリストでコード化されます。
対応する行列を得るには、
jordan
の出力を引数として使って関数dispJordan
をコールしてください。
例:
(%i1) load("diag")$ (%i3) a:matrix([2,0,0,0,0,0,0,0], [1,2,0,0,0,0,0,0], [-4,1,2,0,0,0,0,0], [2,0,0,2,0,0,0,0], [-7,2,0,0,2,0,0,0], [9,0,-2,0,1,2,0,0], [-34,7,1,-2,-1,1,2,0], [145,-17,-16,3,9,-2,0,3])$ (%i34) jordan(a); (%o4) [[2, 3, 3, 1], [3, 1]] (%i5) dispJordan(%); [ 2 1 0 0 0 0 0 0 ] [ ] [ 0 2 1 0 0 0 0 0 ] [ ] [ 0 0 2 0 0 0 0 0 ] [ ] [ 0 0 0 2 1 0 0 0 ] (%o5) [ ] [ 0 0 0 0 2 1 0 0 ] [ ] [ 0 0 0 0 0 2 0 0 ] [ ] [ 0 0 0 0 0 0 2 0 ] [ ] [ 0 0 0 0 0 0 0 3 ]
この関数を使うためには、最初にload("diag")
を書いてください。
dispJordan
とminimalPoly
も参照してください。
関数jordan
によって与えられる出力である
Maximaリストlで与えられたコードに関連付けられた
Jordan行列を返します。
例:
(%i1) load("diag")$ (%i2) b1:matrix([0,0,1,1,1], [0,0,0,1,1], [0,0,0,0,1], [0,0,0,0,0], [0,0,0,0,0])$ (%i3) jordan(b1); (%o3) [[0, 3, 2]] (%i4) dispJordan(%); [ 0 1 0 0 0 ] [ ] [ 0 0 1 0 0 ] [ ] (%o4) [ 0 0 0 0 0 ] [ ] [ 0 0 0 0 1 ] [ ] [ 0 0 0 0 0 ]
この関数を使うためには、最初にload("diag")
を書いてください。
jordan
とminimalPoly
も参照してください。
関数jordan
によって与えられる出力である
Maximaリストlで与えられたコードに関連付けられた
最小多項式を返します。
例:
(%i1) load("diag")$ (%i2) a:matrix([2,1,2,0], [-2,2,1,2], [-2,-1,-1,1], [3,1,2,-1])$ (%i3) jordan(a); (%o3) [[- 1, 1], [1, 3]] (%i4) minimalPoly(%); 3 (%o4) (x - 1) (x + 1)
この関数を使うためには、最初にload("diag")
を書いてください。
jordan
とdispJordan
も参照してください。
Returns the matrix
(M^^-1).A.M=J―
ただしJはAのJordan形とする―
のような
行列Mを返します。
Maximaリストlは
関数jordan
が返すようなJordan形のコード化された形式です。
例:
(%i1) load("diag")$ (%i2) a:matrix([2,1,2,0], [-2,2,1,2], [-2,-1,-1,1], [3,1,2,-1])$ (%i3) jordan(a); (%o3) [[- 1, 1], [1, 3]] (%i4) M: ModeMatrix(a,%); [ 1 - 1 1 1 ] [ ] [ 1 ] [ - - - 1 0 0 ] [ 9 ] [ ] (%o4) [ 13 ] [ - -- 1 - 1 0 ] [ 9 ] [ ] [ 17 ] [ -- - 1 1 1 ] [ 9 ] (%i5) is( (M^^-1).a.M = dispJordan(%o3) ); (%o5) true
dispJordan(%o3)
は
行列a
のJordan形であることに注意してください。
この関数を使うためには、最初にload("diag")
を書いてください。
jordan
とdispJordan
も参照してください。
f(mat)を返します。
ここで、fは解析関数でmatは行列です。
この計算はCauchyの積分公式に基づきます。
積分公式は、
もしf(x)
が解析的、かつ、
mat = diag([JF(m1,n1),...,JF(mk,nk)]),
なら、
f(mat) = ModeMatrix*diag([f(JF(m1,n1)), ..., f(JF(mk,nk))]) *ModeMatrix^^(-1)
をはっきり述べます。
この計算に関して約6か8の別の方法があることに注意してください。
いくつかの例が続きます。
例 1:
(%i1) load("diag")$ (%i2) b2:matrix([0,1,0], [0,0,1], [-1,-3,-3])$ (%i3) mat_function(exp,t*b2); 2 - t t %e - t - t (%o3) matrix([-------- + t %e + %e , 2 - t - t - t 2 %e %e - t - t %e t (- ----- - ----- + %e ) + t (2 %e - -----) t 2 t t - t - t - t - t - t %e 2 %e %e + 2 %e , t (%e - -----) + t (----- - -----) t 2 t 2 - t - t - t - t t %e 2 %e %e - t + %e ], [- --------, - t (- ----- - ----- + %e ), 2 t 2 t - t - t 2 - t 2 %e %e t %e - t - t (----- - -----)], [-------- - t %e , 2 t 2 - t - t - t 2 %e %e - t - t %e t (- ----- - ----- + %e ) - t (2 %e - -----), t 2 t t - t - t - t 2 %e %e - t %e t (----- - -----) - t (%e - -----)]) 2 t t (%i4) ratsimp(%); [ 2 - t ] [ (t + 2 t + 2) %e ] [ -------------------- ] [ 2 ] [ ] [ 2 - t ] (%o4) Col 1 = [ t %e ] [ - -------- ] [ 2 ] [ ] [ 2 - t ] [ (t - 2 t) %e ] [ ---------------- ] [ 2 ] [ 2 - t ] [ (t + t) %e ] [ ] Col 2 = [ 2 - t ] [ - (t - t - 1) %e ] [ ] [ 2 - t ] [ (t - 3 t) %e ] [ 2 - t ] [ t %e ] [ -------- ] [ 2 ] [ ] [ 2 - t ] Col 3 = [ (t - 2 t) %e ] [ - ---------------- ] [ 2 ] [ ] [ 2 - t ] [ (t - 4 t + 2) %e ] [ -------------------- ] [ 2 ]
例 2:
(%i5) b1:matrix([0,0,1,1,1], [0,0,0,1,1], [0,0,0,0,1], [0,0,0,0,0], [0,0,0,0,0])$ (%i6) mat_function(exp,t*b1); [ 2 ] [ t ] [ 1 0 t t -- + t ] [ 2 ] [ ] (%o6) [ 0 1 0 t t ] [ ] [ 0 0 1 0 t ] [ ] [ 0 0 0 1 0 ] [ ] [ 0 0 0 0 1 ] (%i7) minimalPoly(jordan(b1)); 3 (%o7) x (%i8) ident(5)+t*b1+1/2*(t^2)*b1^^2; [ 2 ] [ t ] [ 1 0 t t -- + t ] [ 2 ] [ ] (%o8) [ 0 1 0 t t ] [ ] [ 0 0 1 0 t ] [ ] [ 0 0 0 1 0 ] [ ] [ 0 0 0 0 1 ] (%i9) mat_function(exp,%i*t*b1); [ 2 ] [ t ] [ 1 0 %i t %i t %i t - -- ] [ 2 ] [ ] (%o9) [ 0 1 0 %i t %i t ] [ ] [ 0 0 1 0 %i t ] [ ] [ 0 0 0 1 0 ] [ ] [ 0 0 0 0 1 ] (%i10) mat_function(cos,t*b1)+%i*mat_function(sin,t*b1); [ 2 ] [ t ] [ 1 0 %i t %i t %i t - -- ] [ 2 ] [ ] (%o10) [ 0 1 0 %i t %i t ] [ ] [ 0 0 1 0 %i t ] [ ] [ 0 0 0 1 0 ] [ ] [ 0 0 0 0 1 ]
例 3:
(%i11) a1:matrix([2,1,0,0,0,0], [-1,4,0,0,0,0], [-1,1,2,1,0,0], [-1,1,-1,4,0,0], [-1,1,-1,1,3,0], [-1,1,-1,1,1,2])$ (%i12) fpow(x):=block([k],declare(k,integer),x^k)$ (%i13) mat_function(fpow,a1); [ k k - 1 ] [ k - 1 ] [ 3 - k 3 ] [ k 3 ] [ ] [ ] [ k - 1 ] [ k k - 1 ] [ - k 3 ] [ 3 + k 3 ] [ ] [ ] [ k - 1 ] [ k - 1 ] [ - k 3 ] [ k 3 ] (%o13) Col 1 = [ ] Col 2 = [ ] [ k - 1 ] [ k - 1 ] [ - k 3 ] [ k 3 ] [ ] [ ] [ k - 1 ] [ k - 1 ] [ - k 3 ] [ k 3 ] [ ] [ ] [ k - 1 ] [ k - 1 ] [ - k 3 ] [ k 3 ] [ 0 ] [ 0 ] [ ] [ ] [ 0 ] [ 0 ] [ ] [ ] [ k k - 1 ] [ k - 1 ] [ 3 - k 3 ] [ k 3 ] [ ] [ ] Col 3 = [ k - 1 ] Col 4 = [ k k - 1 ] [ - k 3 ] [ 3 + k 3 ] [ ] [ ] [ k - 1 ] [ k - 1 ] [ - k 3 ] [ k 3 ] [ ] [ ] [ k - 1 ] [ k - 1 ] [ - k 3 ] [ k 3 ] [ 0 ] [ ] [ 0 ] [ 0 ] [ ] [ ] [ 0 ] [ 0 ] [ ] [ ] [ 0 ] Col 5 = [ 0 ] Col 6 = [ ] [ ] [ 0 ] [ k ] [ ] [ 3 ] [ 0 ] [ ] [ ] [ k k ] [ k ] [ 3 - 2 ] [ 2 ]
この関数を使うためには、最初にload("diag")
を書いてください。
Next: distrib, Previous: descriptive [Contents][Index]