Next: , Previous:   [Contents][Index]

90 Package solve_rec


90.1 Introduction to solve_rec

solve_rec is a package for solving linear recurrences with polynomial coefficients.

A demo is available with demo("solve_rec");.

Example:

(%i1) load("solve_rec")$
(%i2) solve_rec((n+4)*s[n+2] + s[n+1] - (n+1)*s[n], s[n]);
                                    n
                 %k  (2 n + 3) (- 1)          %k
                   1                            2
(%o2)       s  = -------------------- + ---------------
             n     (n + 1) (n + 2)      (n + 1) (n + 2)

90.2 Functions and Variables for solve_rec

Function: harmonic_number (x)

When x is positive integer n, harmonic_number is the n’th harmonic number. More generally, harmonic_number(x) = psi[0](x+1) + %gamma. (See polygamma).

(%i1) load("simplify_sum")$
(%i2) harmonic_number(5);
                               137
(%o2)                          ---
                               60
(%i3) sum(1/k, k, 1, 5);
                               137
(%o3)                          ---
                               60
(%i4) float(harmonic_number(sqrt(2)));
(%o4)              %gamma + 0.6601971549171388
(%i5) float(psi[0](1+sqrt(2)))+%gamma;
(%o5)              %gamma + 0.6601971549171388
Function: harmonic_to_psi (x)

Converts expressions with harmonic_number to the equivalent expression involving psi[0] (see polygamma).

(%i1) load("simplify_sum")$
(%i2) harmonic_to_psi(harmonic_number(sqrt(2)));
(%o2)              psi (sqrt(2) + 1) + %gamma
                      0
Function: reduce_order (rec, sol, var)

Reduces the order of linear recurrence rec when a particular solution sol is known. The reduced reccurence can be used to get other solutions.

Example:

(%i3) rec: x[n+2] = x[n+1] + x[n]/n;
                                      x
                                       n
(%o3)               x      = x      + --
                     n + 2    n + 1   n
(%i4) solve_rec(rec, x[n]);
WARNING: found some hypergeometrical solutions! 
(%o4)                    x  = %k  n
                          n     1
(%i5) reduce_order(rec, n, x[n]);
(%t5)                    x  = n %z
                          n       n

                           n - 1
                           ====
                           \
(%t6)                %z  =  >     %u
                       n   /        %j
                           ====
                           %j = 0

(%o6)             (- n - 2) %u     - %u
                              n + 1     n
(%i6) solve_rec((n+2)*%u[n+1] + %u[n], %u[n]);
                                     n
                            %k  (- 1)
                              1
(%o6)                 %u  = ----------
                        n    (n + 1)!

So the general solution is

             n - 1
             ====        j
             \      (- 1)
       %k  n  >    -------- + %k  n
         2   /     (j + 1)!     1
             ====
             j = 0
Categories: Package solve_rec ·
Option variable: simplify_products

Default value: true

If simplify_products is true, solve_rec will try to simplify products in result.

See also: solve_rec.

Categories: Package solve_rec ·
Function: simplify_sum (expr)

Tries to simplify all sums appearing in expr to a closed form.

To use this function first load the simplify_sum package with load("simplify_sum").

Example:

(%i1) load("simplify_sum")$
(%i2) sum(binomial(n+k,k)/2^k, k, 1, n) + sum(binomial(2*n, 2*k), k, 1,n);
        n                          n
       ====                       ====
       \     binomial(n + k, k)   \
(%o2)   >    ------------------ +  >    binomial(2 n, 2 k)
       /              k           /
       ====          2            ====
       k = 1                      k = 1
(%i3) simplify_sum(%);
                         2 n - 1    n
(%o3)                   2        + 2  - 2
Function: solve_rec (eqn, var, [init])

Solves for hypergeometrical solutions to linear recurrence eqn with polynomials coefficient in variable var. Optional arguments init are initial conditions.

solve_rec can solve linear recurrences with constant coefficients, finds hypergeometrical solutions to homogeneous linear recurrences with polynomial coefficients, rational solutions to linear recurrences with polynomial coefficients and can solve Ricatti type recurrences.

Note that the running time of the algorithm used to find hypergeometrical solutions is exponential in the degree of the leading and trailing coefficient.

To use this function first load the solve_rec package with load("solve_rec");.

Example of linear recurrence with constant coefficients:

(%i2) solve_rec(a[n]=a[n-1]+a[n-2]+n/2^n, a[n]);
                        n          n
           (sqrt(5) - 1)  %k  (- 1)
                            1           n
(%o2) a  = ------------------------- - ----
       n               n                  n
                      2                5 2
                                                n
                                   (sqrt(5) + 1)  %k
                                                    2    2
                                 + ------------------ - ----
                                            n              n
                                           2            5 2

Example of linear recurrence with polynomial coefficients:

(%i7) 2*x*(x+1)*y[x] - (x^2+3*x-2)*y[x+1] + (x-1)*y[x+2];
                         2
(%o7) (x - 1) y      - (x  + 3 x - 2) y      + 2 x (x + 1) y
               x + 2                   x + 1                x
(%i8) solve_rec(%, y[x], y[1]=1, y[3]=3);
                              x
                           3 2    x!
(%o9)                 y  = ---- - --
                       x    4     2

Example of Ricatti type recurrence:

(%i2) x*y[x+1]*y[x] - y[x+1]/(x+2) + y[x]/(x-1) = 0;
                            y         y
                             x + 1     x
(%o2)         x y  y      - ------ + ----- = 0
                 x  x + 1   x + 2    x - 1
(%i3) solve_rec(%, y[x], y[3]=5)$
(%i4) ratsimp(minfactorial(factcomb(%)));
                                   3
                               30 x  - 30 x
(%o4) y  = - -------------------------------------------------
       x        6      5       4       3       2
             5 x  - 3 x  - 25 x  + 15 x  + 20 x  - 12 x - 1584

See also: solve_rec_rat, simplify_products and product_use_gamma.

Categories: Package solve_rec ·
Function: solve_rec_rat (eqn, var, [init])

Solves for rational solutions to linear recurrences. See solve_rec for description of arguments.

To use this function first load the solve_rec package with load("solve_rec");.

Example:

(%i1) (x+4)*a[x+3] + (x+3)*a[x+2] - x*a[x+1] + (x^2-1)*a[x];
(%o1)  (x + 4) a      + (x + 3) a      - x a
                x + 3            x + 2      x + 1
                                                   2
                                               + (x  - 1) a
                                                            x
(%i2) solve_rec_rat(% = (x+2)/(x+1), a[x]);
                       1
(%o2)      a  = ---------------
            x   (x - 1) (x + 1)

See also: solve_rec.

Categories: Package solve_rec ·
Option variable: product_use_gamma

Default value: true

When simplifying products, solve_rec introduces gamma function into the expression if product_use_gamma is true.

See also: simplify_products, solve_rec.

Categories: Package solve_rec ·
Function: summand_to_rec
    summand_to_rec (summand, k, n)
    summand_to_rec (summand, [k, lo, hi], n)

Returns the recurrence satisfied by the sum

     hi
    ====
    \
     >     summand
    /
    ====
  k = lo

where summand is hypergeometrical in k and n. If lo and hi are omitted, they are assumed to be lo = -inf and hi = inf.

To use this function first load the simplify_sum package with load("simplify_sum").

Example:

(%i1) load("simplify_sum")$
(%i2) summand: binom(n,k);
(%o2)                           binomial(n, k)
(%i3) summand_to_rec(summand,k,n);
(%o3)                      2 sm  - sm      = 0
                               n     n + 1
(%i7) summand: binom(n, k)/(k+1);
                                binomial(n, k)
(%o7)                           --------------
                                    k + 1
(%i8) summand_to_rec(summand, [k, 0, n], n);
(%o8)               2 (n + 1) sm  - (n + 2) sm      = - 1
                                n             n + 1
Categories: Package solve_rec ·

Next: , Previous:   [Contents][Index]