Next: Package romberg, Previous: Package quantum_computing [Contents][Index]
The package ratpow
provides functions that return the coefficients
of the numerator of a CRE polynomial in a given variable.
For example,
ratp_coeffs(5*x^7-3*x^2+4,x)
returns [[7,5],[2,-3],[0,4]]
, which omits zero terms;
ratp_dense_coeffs(5*x^7-y*x^2+4,x)
returns [5,0,0,0,0,-y,0,4]
, which includes zero terms;
ratp_dense_coeffs((x^4-y^4)/(x-y),x)
returns [1,y,y^2,y^3]
,
because CRE simplifies the expression to x^3+y*x^2+y^2*x+y^3
;
ratp_dense_coeffs(x+sqrt(x),x)
returns [1,sqrt(x)]
while ratp_dense_coeffs(x+sqrt(x),sqrt(x))
returns [1,x]
:
in CRE form, x
and sqrt(x)
are treated as independent variables.
The returned coefficients are in CRE form except for numbers.
For the list of vars of a CRE polynomial, use showratvars
.
For the denominator of a CRE polynomial, use ratdenom
.
For information about CREs see also rat
, ratdisrep
and
showratvars
.
Up: Package ratpow [Contents][Index]
Returns the highest power of x in ratnumer(expr)
(%i1) load("ratpow")$
(%i2) ratp_hipow( x^(5/2) + x^2 , x); (%o2) 2
(%i3) ratp_hipow( x^(5/2) + x^2 , sqrt(x)); (%o3) 5
Returns the lowest power of x in ratnumer(expr)
(%i1) load("ratpow")$
(%i2) ratp_lopow( x^5 + x^2 , x); (%o2) 2
The following example returns 0 since 1
equals x^0
:
(%i1) load("ratpow")$
(%i2) ratp_lopow( x^5 + x^2 + 1, x); (%o2) 0
The CRE form of the following equation contains sqrt(x)
and
x
. Since they are interpreted as independent variables,
ratp_lopow
returns 0
:
(%i1) load("ratpow")$
(%i2) g:sqrt(x)^5 + sqrt(x)^2; 5/2 (%o2) x + x
(%i3) showratvars(g); 1/2 (%o3) [x , x]
(%i4) ratp_lopow( g, x); (%o4) 0
(%i5) ratp_lopow( g, sqrt(x)); (%o5) 0
Returns the powers and coefficients of x in ratnumer(expr)
as a list of length-2 lists;
returned coefficients are in CRE form except for numbers.
ratnumer(expr)
.
(%i1) load("ratpow")$
(%i2) ratp_coeffs( 4*x^3 + x + sqrt(x), x); (%o2)/R/ [[3, 4], [1, 1], [0, sqrt(x)]]
Returns the coefficients of powers of x in ratnumer(expr)
from highest to lowest;
returned coefficients are in CRE form except for numbers.
(%i1) load("ratpow")$
(%i2) ratp_dense_coeffs( 4*x^3 + x + sqrt(x), x); (%o2)/R/ [4, 0, 1, sqrt(x)]
Next: Package romberg, Previous: Package quantum_computing [Contents][Index]