Next: Data Types and Structures, Previous: Help [Contents][Index]
Next: Functions and Variables for Command Line, Previous: Command Line, Up: Command Line [Contents][Index]
This section documents Maxima’s interactive command-line interface, called a read-eval-print loop (REPL).
For information on command-line options, see command_line_options
.
Next: Functions and Variables for Display, Previous: Introduction to Command Line, Up: Command Line [Contents][Index]
__
is the input expression currently being evaluated. That is, while an
input expression expr is being evaluated, __
is expr.
__
is assigned the input expression before the input is simplified or
evaluated. However, the value of __
is simplified (but not evaluated)
when it is displayed.
__
is recognized by batch
and load
. In a file processed
by batch
, __
has the same meaning as at the interactive prompt.
In a file processed by load
, __
is bound to the input expression
most recently entered at the interactive prompt or in a batch file; __
is not bound to the input expressions in the file being processed. In
particular, when load (filename)
is called from the interactive
prompt, __
is bound to load (filename)
while the file is
being processed.
Examples:
(%i1) print ("I was called as", __); I was called as print(I was called as, __) (%o1) print(I was called as, __)
(%i2) foo (__); (%o2) foo(foo(__))
(%i3) g (x) := (print ("Current input expression =", __), 0); (%o3) g(x) := (print("Current input expression =", __), 0)
(%i4) [aa : 1, bb : 2, cc : 3]; (%o4) [1, 2, 3]
(%i5) (aa + bb + cc)/(dd + ee + g(x)); cc + bb + aa Current input expression = -------------- g(x) + ee + dd 6 (%o5) ------- ee + dd
_
is the most recent input expression (e.g., %i1
, %i2
,
%i3
, …).
_
is assigned the input expression before the input is simplified or
evaluated. However, the value of _
is simplified (but not evaluated)
when it is displayed.
_
is recognized by batch
and load
. In a file processed
by batch
, _
has the same meaning as at the interactive prompt.
In a file processed by load
, _
is bound to the input expression
most recently evaluated at the interactive prompt or in a batch file; _
is not bound to the input expressions in the file being processed.
Examples:
(%i1) 13 + 29; (%o1) 42
(%i2) :lisp $_ ((MPLUS) 13 29)
(%i2) _; (%o2) 42
(%i3) sin (%pi/2); (%o3) 1
(%i4) :lisp $_ ((%SIN) ((MQUOTIENT) $%PI 2))
(%i4) _; (%o4) 1
(%i5) a: 13$ (%i6) b: 29$
(%i7) a + b; (%o7) 42
(%i8) :lisp $_ ((MPLUS) $A $B)
(%i8) _; (%o8) b + a
(%i9) a + b; (%o9) 42
(%i10) ev (_); (%o10) 42
%
is the output expression (e.g., %o1
, %o2
, %o3
,
…) most recently computed by Maxima, whether or not it was displayed.
%
is recognized by batch
and load
. In a file processed
by batch
, %
has the same meaning as at the interactive prompt.
In a file processed by load
, %
is bound to the output expression
most recently computed at the interactive prompt or in a batch file; %
is not bound to output expressions in the file being processed.
In compound statements, namely block
, lambda
, or
(s_1, ..., s_n)
, %%
is the value of the previous
statement.
At the first statement in a compound statement, or outside of a compound
statement, %%
is undefined.
%%
is recognized by batch
and load
, and it has the
same meaning as at the interactive prompt.
See also %
.
Examples:
The following two examples yield the same result.
(%i1) block (integrate (x^5, x), ev (%%, x=2) - ev (%%, x=1)); 21 (%o1) -- 2 (%i2) block ([prev], prev: integrate (x^5, x), ev (prev, x=2) - ev (prev, x=1)); 21 (%o2) -- 2
A compound statement may comprise other compound statements. Whether a
statement be simple or compound, %%
is the value of the previous
statement.
(%i3) block (block (a^n, %%*42), %%/6); n (%o3) 7 a
Within a compound statement, the value of %%
may be inspected at a break
prompt, which is opened by executing the break
function. For example,
entering %%;
in the following example yields 42
.
(%i4) block (a: 42, break ())$ Entering a Maxima break point. Type 'exit;' to resume. _%%; 42 _
The value of the i’th previous output expression. That is, if the next
expression to be computed is the n’th output, %th (m)
is the
(n - m)’th output.
%th
is recognized by batch
and load
. In a file processed
by batch
, %th
has the same meaning as at the interactive prompt.
In a file processed by load
, %th
refers to output expressions most
recently computed at the interactive prompt or in a batch file; %th
does
not refer to output expressions in the file being processed.
Example:
%th
is useful in batch
files or for referring to a group of
output expressions. This example sets s
to the sum of the last five
output expressions.
(%i1) 1;2;3;4;5; (%o1) 1 (%o2) 2 (%o3) 3 (%o4) 4 (%o5) 5 (%i6) block (s: 0, for i:1 thru 5 do s: s + %th(i), s); (%o6) 15
As prefix to a function or variable name, ?
signifies that the name is a
Lisp name, not a Maxima name. For example, ?round
signifies the Lisp
function ROUND
. See Lisp and Maxima for more on this point.
The notation ? word
(a question mark followed a word, separated by
whitespace) is equivalent to describe("word")
. The question mark must
occur at the beginning of an input line; otherwise it is not recognized as a
request for documentation. See also describe
.
The notation ?? word
(??
followed a word, separated by whitespace)
is equivalent to describe("word", inexact)
. The question mark must occur
at the beginning of an input line; otherwise it is not recognized as a request
for documentation. See also describe
.
The dollar sign $
terminates an input expression,
and the most recent output %
and an output label, e.g. %o1
,
are assigned the result, but the result is not displayed.
See also ;
.
Example:
(%i1) 1 + 2 + 3 $
(%i2) %; (%o2) 6
(%i3) %o1; (%o3) 6
The semicolon ;
terminates an input expression,
and the resulting output is displayed.
See also $
.
Example:
(%i1) 1 + 2 + 3; (%o1) 6
Default value: %i
inchar
is the prefix of the labels of expressions entered by the user.
Maxima automatically constructs a label for each input expression by
concatenating inchar
and linenum
.
inchar
may be assigned any string or symbol, not necessarily a single
character. Because Maxima internally takes into account only the first char of
the prefix, the prefixes inchar
, outchar
, and
linechar
should have a different first char. Otherwise some commands
like kill(inlabels)
do not work as expected.
See also labels
.
Example:
(%i1) inchar: "input"; (%o1) input
(input2) expand((a+b)^3); 3 2 2 3 (%o2) b + 3 a b + 3 a b + a
Default value: []
infolists
is a list of the names of all of the information
lists in Maxima. These are:
labels
All bound %i
, %o
, and %t
labels.
values
All bound atoms which are user variables, not Maxima options or switches,
created by :
or ::
or functional binding.
functions
arrays
All arrays, hashed arrays
and memoizing functions
.
macros
All user-defined macro functions, created by ::=
.
myoptions
All options ever reset by the user (whether or not they are later reset to their default values).
rules
All user-defined pattern matching and simplification rules, created
by tellsimp
, tellsimpafter
, defmatch
, or
defrule
.
aliases
All atoms which have a user-defined alias, created by the alias
,
ordergreat
, orderless
functions or by declaring the atom as a
noun
with declare
.
dependencies
All atoms which have functional dependencies, created by the
depends
, dependencies
, or gradef
functions.
gradefs
All functions which have user-defined derivatives, created by the
gradef
function.
props
All atoms which have any property other than those mentioned above, such as
properties established by atvalue
or matchdeclare
, etc.,
as well as properties established in the declare
function.
structures
All structs defined using defstruct
.
let_rule_packages
All user-defined let
rule packages
plus the special package default_let_rule_package
.
(default_let_rule_package
is the name of the rule package used when
one is not explicitly set by the user.)
Removes all bindings (value, function, array, or rule) from the arguments
a_1, …, a_n. An argument a_k may be a symbol or a
single array element. When a_k is a single array element, kill
unbinds that element without affecting any other elements of the array.
Several special arguments are recognized. Different kinds of arguments
may be combined, e.g., kill (inlabels, functions, allbut (foo, bar))
.
kill (labels)
unbinds all input, output, and intermediate expression
labels created so far. kill (inlabels)
unbinds only input labels which
begin with the current value of inchar
. Likewise,
kill (outlabels)
unbinds only output labels which begin with the current
value of outchar
, and kill (linelabels)
unbinds only
intermediate expression labels which begin with the current value of
linechar
.
kill (n)
, where n is an integer,
unbinds the n most recent input and output labels.
kill ([m, n])
unbinds input and output labels m through
n.
kill (infolist)
, where infolist is any item in
infolists
(such as values
, functions
, or
arrays
) unbinds all items in infolist.
See also infolists
.
kill (all)
unbinds all items on all infolists. kill (all)
does
not reset global variables to their default values; see reset
on this
point.
kill (allbut (a_1, ..., a_n))
unbinds all items on all
infolists except for a_1, …, a_n.
kill (allbut (infolist))
unbinds all items except for the ones on
infolist, where infolist is values
,
functions
, arrays
, etc.
The memory taken up by a bound property is not released until all symbols are unbound from it. In particular, to release the memory taken up by the value of a symbol, one unbinds the output label which shows the bound value, as well as unbinding the symbol itself.
kill
quotes its arguments. The quote-quote operator ''
defeats quotation.
kill (symbol)
unbinds all properties of symbol. In contrast,
the functions remvalue
, remfunction
,
remarray
, and remrule
unbind a specific property.
Note that facts declared by assume
don’t require a symbol they apply to,
therefore aren’t stored as properties of symbols and therefore aren’t affected
by kill
.
kill
always returns done
, even if an argument has no binding.
Returns the list of input, output, or intermediate expression labels which begin
with symbol. Typically symbol is the value of
inchar
, outchar
, or linechar
.
If no labels begin with symbol, labels
returns an empty list.
By default, Maxima displays the result of each user input expression, giving the
result an output label. The output display is suppressed by terminating the
input with $
(dollar sign) instead of ;
(semicolon). An output
label is constructed and bound to the result, but not displayed, and the label
may be referenced in the same way as displayed output labels. See also
%
, %%
, and %th
.
Intermediate expression labels can be generated by some functions. The option
variable programmode
controls whether solve
and some other
functions generate intermediate expression labels instead of returning a list of
expressions. Some other functions, such as ldisplay
, always generate
intermediate expression labels.
See also inchar
, outchar
, linechar
, and
infolists
.
The variable labels
is the list of input, output, and intermediate
expression labels, including all previous labels if inchar
,
outchar
, or linechar
were redefined.
Default value: %t
linechar
is the prefix of the labels of intermediate expressions
generated by Maxima. Maxima constructs a label for each intermediate expression
(if displayed) by concatenating linechar
and linenum
.
linechar
may be assigned any string or symbol, not necessarily a single
character. Because Maxima internally takes into account only the first char of
the prefix, the prefixes inchar
, outchar
, and
linechar
should have a different first char. Otherwise some commands
like kill(inlabels)
do not work as expected.
Intermediate expressions might or might not be displayed.
See programmode
and labels
.
The line number of the current pair of input and output expressions.
Default value: []
myoptions
is the list of all options ever reset by the user,
whether or not they get reset to their default value.
Default value: false
When nolabels
is true
, input and output result labels (%i
and %o
, respectively) are displayed, but the labels are not bound to
results, and the labels are not appended to the labels
list. Since
labels are not bound to results, garbage collection can recover the memory taken
up by the results.
Otherwise input and output result labels are bound to results, and the labels
are appended to the labels
list.
Intermediate expression labels (%t
) are not affected by nolabels
;
whether nolabels
is true
or false
, intermediate expression
labels are bound and appended to the labels
list.
See also batch
, load
, and labels
.
Default value: false
When optionset
is true
, Maxima prints out a message whenever a
Maxima option is reset. This is useful if the user is doubtful of the spelling
of some option and wants to make sure that the variable he assigned a value to
was truly an option variable.
Example:
(%i1) optionset:true; assignment: assigning to option optionset (%o1) true (%i2) gamma_expand:true; assignment: assigning to option gamma_expand (%o2) true
Default value: %o
outchar
is the prefix of the labels of expressions computed by Maxima.
Maxima automatically constructs a label for each computed expression by
concatenating outchar
and linenum
.
outchar
may be assigned any string or symbol, not necessarily a single
character. Because Maxima internally takes into account only the first char of
the prefix, the prefixes inchar
, outchar
and
linechar
should have a different first char. Otherwise some commands
like kill(inlabels)
do not work as expected.
See also labels
.
Example:
(%i1) outchar: "output"; (output1) output
(%i2) expand((a+b)^3); 3 2 2 3 (output2) b + 3 a b + 3 a b + a
Displays input, output, and intermediate expressions, without recomputing them.
playback
only displays the expressions bound to labels; any other output
(such as text printed by print
or describe
, or error messages)
is not displayed. See also labels
.
playback
quotes its arguments. The quote-quote operator ''
defeats quotation. playback
always returns done
.
playback ()
(with no arguments) displays all input, output, and
intermediate expressions generated so far. An output expression is displayed
even if it was suppressed by the $
terminator when it was originally
computed.
playback (n)
displays the most recent n expressions.
Each input, output, and intermediate expression counts as one.
playback ([m, n])
displays input, output, and intermediate
expressions with numbers from m through n, inclusive.
playback ([m])
is equivalent to
playback ([m, m])
; this usually prints one pair of input and
output expressions.
playback (input)
displays all input expressions generated so far.
playback (slow)
pauses between expressions and waits for the user to
press enter
. This behavior is similar to demo
.
playback (slow)
is useful in conjunction with save
or
stringout
when creating a secondary-storage file in order to pick out
useful expressions.
playback (time)
displays the computation time for each expression.
playback (grind)
displays input expressions in the same format as the
grind
function. Output expressions are not affected by the grind
option. See grind
.
Arguments may be combined, e.g., playback ([5, 10], grind, time, slow)
.
Default value: _
prompt
is the prompt symbol of the demo
function,
playback (slow)
mode, and the Maxima break loop (as invoked by
break
).
Terminates the Maxima session. Note that the function must be invoked as
quit();
or quit()$
, not quit
by itself.
quit
supports returning an exit code to the shell for Lisps and
OSes that support exit codes. The default exit code is 0 (usually
indicating no errors encountered). Thus quit(1)
indicates to the
shell that maxima exited with some kind of failure. This is useful in
scripts where maxima can indicate to the shell that maxima failed to
compute something or some other bad thing happened.
To stop a lengthy computation, type control-C
. The default action is to
return to the Maxima prompt. If *debugger-hook*
is nil
,
control-C
opens the Lisp debugger. See also Debugging.
Prints expr_1, …, expr_n, then reads one expression from the
console and returns the evaluated expression. The expression is terminated with
a semicolon ;
or dollar sign $
.
See also readonly
Example:
(%i1) foo: 42$ (%i2) foo: read ("foo is", foo, " -- enter new value.")$ foo is 42 -- enter new value. (a+b)^3; (%i3) foo; 3 (%o3) (b + a)
Prints expr_1, …, expr_n, then reads one expression from the
console and returns the expression (without evaluation). The expression is
terminated with a ;
(semicolon) or $
(dollar sign).
See also read
.
Examples:
(%i1) aa: 7$ (%i2) foo: readonly ("Enter an expression:"); Enter an expression: 2^aa; aa (%o2) 2 (%i3) foo: read ("Enter an expression:"); Enter an expression: 2^aa; (%o3) 128
Resets many global variables and options, and some other variables, to their default values.
reset
processes the variables on the Lisp list
*variable-initial-values*
. The Lisp macro defmvar
puts variables
on this list (among other actions). Many, but not all, global variables and
options are defined by defmvar
, and some variables defined by
defmvar
are not global variables or options.
Default value: false
When showtime
is true
, the computation time and elapsed time is
printed with each output expression.
The computation time is always recorded, so time
and playback
can
display the computation time even when showtime
is false
.
See also timer
.
Enters the Lisp system under Maxima. (to-maxima)
returns to Maxima.
Example:
Define a function and enter the Lisp system under Maxima. The definition is
inspected on the property list, then the function definition is extracted,
factored and stored in the variable $result
. The variable can be used in Maxima
after returning to Maxima.
(%i1) f(x):=x^2+x; 2 (%o1) f(x) := x + x (%i2) to_lisp(); Type (to-maxima) to restart, ($quit) to quit Maxima. MAXIMA> (symbol-plist '$f) (MPROPS (NIL MEXPR ((LAMBDA) ((MLIST) $X) ((MPLUS) ((MEXPT) $X 2) $X)))) MAXIMA> (setq $result ($factor (caddr (mget '$f 'mexpr)))) ((MTIMES SIMP FACTORED) $X ((MPLUS SIMP IRREDUCIBLE) 1 $X)) MAXIMA> (to-maxima) Returning to Maxima (%o2) true (%i3) result; (%o3) x (x + 1)
Sequentially read lisp forms from the string str and evaluate them. Any values produced from the last form are returned as a Maxima list.
Examples:
(%i1) eval_string_lisp (""); (%o1) []
(%i2) eval_string_lisp ("(values)"); (%o2) []
(%i3) eval_string_lisp ("69"); (%o3) [69]
(%i4) eval_string_lisp ("1 2 3"); (%o4) [3]
(%i5) eval_string_lisp ("(values 1 2 3)"); (%o5) [1,2,3]
(%i6) eval_string_lisp ("(defun $foo (x) (* 2 x))"); (%o6) [foo]
(%i7) foo (5); (%o7) 10
See also eval_string.
Initial value: []
values
is a list of all bound user variables (not Maxima options or
switches). The list comprises symbols bound by :
, or ::
.
If the value of a variable is removed with the commands kill
,
remove
, or remvalue
the variable is deleted from
values
.
See functions
for a list of user defined functions.
Examples:
First, values
shows the symbols a
, b
, and c
, but
not d
, it is not bound to a value, and not the user function f
.
The values are removed from the variables. values
is the empty list.
(%i1) [a:99, b:: a-90, c:a-b, d, f(x):=x^2]; 2 (%o1) [99, 9, 90, d, f(x) := x ]
(%i2) values; (%o2) [a, b, c]
(%i3) [kill(a), remove(b,value), remvalue(c)]; (%o3) [done, done, [c]]
(%i4) values; (%o4) []
Previous: Functions and Variables for Command Line, Up: Command Line [Contents][Index]
Default value: false
When %edispflag
is true
, Maxima displays %e
to a negative
exponent as a quotient. For example, %e^-x
is displayed as
1/%e^x
. See also exptdispflag
.
Example:
(%i1) %e^-10; - 10 (%o1) %e
(%i2) %edispflag:true$
(%i3) %e^-10; 1 (%o3) ---- 10 %e
Default value: !
absboxchar
is the character used to draw absolute value
signs around expressions which are more than one line tall.
absboxchar
is only used when display2d_unicode
is false
.
Example:
(%i1) display2d_unicode: false $ (%i2) abs((x^3+1)); ! 3 ! (%o2) !x + 1!
Declares the properties of indices applied to the symbol a or each of the of symbols a, b, c, .... If multiple symbols are given, the whole list of properties applies to each symbol.
Given a symbol with indices, a[i_1, i_2, i_3, ...]
,
the k
-th property p_k applies to the k
-th index i_k.
There may be any number of index properties, in any order.
Each property p_k must one of these four recognized properties:
postsubscript
, postsuperscript
, presuperscript
, or presubscript
,
to denote indices which are displayed, respectively,
to the right and below, to the right and above, to the left and above, or to the left and below.
Index properties apply only to the 2-dimensional display of indexed variables
(i.e., when display2d
is true
)
and TeX output via tex
.
Otherwise, index properties are ignored.
Index properties do not change the input of indexed variables,
do not change the algebraic properties of indexed variables,
and do not change the 1-dimensional display of indexed variables.
declare_index_properties
quotes (does not evaluate) its arguments.
remove_index_properties
removes index properties.
kill
also removes index properties (and all other properties).
get_index_properties
retrieves index properties.
Examples:
Given a symbol with indices, a[i_1, i_2, i_3, ...]
,
the k
-th property p_k applies to the k
-th index i_k.
There may be any number of index properties, in any order.
(%i1) declare_index_properties (A, [presubscript, postsubscript]); (%o1) done
(%i2) declare_index_properties (B, [postsuperscript, postsuperscript, presuperscript]); (%o2) done
(%i3) declare_index_properties (C, [postsuperscript, presubscript, presubscript, presuperscript]); (%o3) done
(%i4) A[w, x]; (%o4) A w x
(%i5) B[w, x, y]; y w, x (%o5) B
(%i6) C[w, x, y, z]; z w (%o6) C x, y
Index properties apply only to the 2-dimensional display of indexed variables and TeX output. Otherwise, index properties are ignored.
(%i1) declare_index_properties (A, [presubscript, postsubscript]); (%o1) done
(%i2) A[w, x]; (%o2) A w x
(%i3) tex (A[w, x]); $${}_{w}A_{x}$$ (%o3) false
(%i4) display2d: false $
(%i5) A[w, x]; (%o5) A[w,x]
(%i6) display2d: true $
(%i7) grind (A[w, x]); A[w,x]$ (%o7) done
(%i8) stringdisp: true $
(%i9) string (A[w, x]); (%o9) "A[w,x]"
Returns the properties for a established by declare_index_properties
.
See also remove_index_properties
.
Removes the properties established by declare_index_properties
.
All index properties are removed from each symbol a, b, c, ....
remove_index_properties
quotes (does not evaluate) its arguments.
When a symbol A has index display properties declared via declare_index_properties
,
the value of the property display_index_separator
is the string or other expression which is displayed between indices.
The value of display_index_separator
is assigned by put(A, S, display_index_separator)
,
where S is a string or other expression.
The assigned value is retrieved by get(A, display_index_separator)
.
The display index separator S can be a string, including an empty string,
or false
, indicating the default separator, or any expression.
If not a string and not false
, the property value is coerced to a string via string
.
If no display index separator is assigned, the default separator is used. The default separator is a comma. There is no way to change the default separator.
Each symbol has its own value of display_index_separator
.
See also put
, get
, and declare_index_properties
.
Examples:
When a symbol A has index display properties,
the value of the property display_index_separator
is the string or other expression which is displayed between indices.
The value is assigned by put(A, S, display_index_separator)
,
(%i1) declare_index_properties (A, [postsuperscript, postsuperscript, presubscript, presubscript]); (%o1) done
(%i2) put (A, ";", display_index_separator); (%o2) ;
(%i3) A[w, x, y, z]; w;x (%o3) A y;z
The assigned value is retrieved by get(A, display_index_separator)
.
(%i1) declare_index_properties (A, [postsuperscript, postsuperscript, presubscript, presubscript]); (%o1) done
(%i2) put (A, ";", display_index_separator); (%o2) ;
(%i3) get (A, display_index_separator); (%o3) ;
The display index separator S can be a string, including an empty string,
or false
, indicating the default separator, or any expression.
(%i1) declare_index_properties (A, [postsuperscript, postsuperscript, presubscript, presubscript]); (%o1) done
(%i2) A[w, x, y, z]; w, x (%o2) A y, z
(%i3) put (A, "-", display_index_separator); (%o3) -
(%i4) A[w, x, y, z]; w-x (%o4) A y-z
(%i5) put (A, " ", display_index_separator); (%o5)
(%i6) A[w, x, y, z]; w x (%o6) A y z
(%i7) put (A, "", display_index_separator); (%o7)
(%i8) A[w, x, y, z]; wx (%o8) A yz
(%i9) put (A, false, display_index_separator); (%o9) false
(%i10) A[w, x, y, z]; w, x (%o10) A y, z
(%i11) put (A, 'foo, display_index_separator); (%o11) foo
(%i12) A[w, x, y, z]; wfoox (%o12) A yfooz
If no display index separator is assigned, the default separator is used. The default separator is a comma.
(%i1) declare_index_properties (A, [postsuperscript, postsuperscript, presubscript, presubscript]); (%o1) done
(%i2) A[w, x, y, z]; w, x (%o2) A y, z
Each symbol has its own value of display_index_separator
.
(%i1) declare_index_properties (A, [postsuperscript, postsuperscript, presubscript, presubscript]); (%o1) done
(%i2) put (A, " ", display_index_separator); (%o2)
(%i3) declare_index_properties (B, [postsuperscript, postsuperscript, presubscript, presubscript]); (%o3) done
(%i4) put (B, ";", display_index_separator); (%o4) ;
(%i5) A[w, x, y, z] + B[w, x, y, z]; w;x w x (%o5) B + A y;z y z
is like display
but only the value of the arguments are displayed rather
than equations. This is useful for complicated arguments which don’t have names
or where only the value of the argument is of interest and not the name.
Example:
(%i1) b[1,2]:x-x^2$ (%i2) x:123$
(%i3) disp(x, b[1,2], sin(1.0)); 123 2 x - x 0.8414709848078965 (%o3) done
Displays equations whose left side is expr_i unevaluated, and whose right
side is the value of the expression centered on the line. This function is
useful in blocks and for
statements in order to have intermediate results
displayed. The arguments to display
are usually atoms, subscripted
variables, or function calls.
See also ldisplay
, disp
, and ldisp
.
Example:
(%i1) b[1,2]:x-x^2$ (%i2) x:123$
(%i3) display(x, b[1,2], sin(1.0)); x = 123 2 b = x - x 1, 2 sin(1.0) = 0.8414709848078965 (%o3) done
Default value: true
When display2d
is true
,
the console display is an attempt to present mathematical expressions
as they might appear in books and articles,
using only letters, numbers, and some punctuation characters.
This display is sometimes called the "pretty printer" display.
When display2d
is true
,
Maxima attempts to honor the global variable for line length, linel
.
When an atom (symbol, number, or string) would otherwise cause a line to exceed linel
,
the atom may be printed in pieces on successive lines,
with a continuation character (backslash, \
) at the end of the leading piece;
however, in some cases, such atoms are printed without a line break,
and the length of the line is greater than linel
.
When display2d
is false
,
the console display is a 1-dimensional or linear form
which is the same as the output produced by grind
.
When display2d
is false
,
the value of stringdisp
is ignored,
and strings are always displayed with quote marks.
When display2d
is false
,
Maxima attempts to honor linel
,
but atoms are not broken across lines,
and the actual length of an output line may exceed linel
.
See also leftjust
to switch between a left justified and a centered
display of equations.
Example:
(%i1) x/(x^2+1); x (%o1) ------ 2 x + 1
(%i2) display2d:false$
(%i3) x/(x^2+1); (%o3) x/(x^2+1)
Default value: false
When display_format_internal
is true
, expressions are displayed
without being transformed in ways that hide the internal mathematical
representation. The display then corresponds to what inpart
returns
rather than part
.
Examples:
User part inpart a-b; a - b a + (- 1) b a - 1 a/b; - a b b 1/2 sqrt(x); sqrt(x) x 4 X 4 X*4/3; --- - X 3 3
While maxima by default realizes 2d Output using ASCII-Art some frontend
change that to TeX, MathML or a specific XML dialect that better suits
the needs for this specific frontend. with_default_2d_display
temporarily switches maxima to the default 2D ASCII Art formatter for
outputting the result of expr
.
See also set_alt_display
and display2d
.
Default value: true
When display2d_unicode
is true
,
the 2-d pretty printer (enabled by the global flag display2d
) uses Unicode drawing characters [1] to display
integrals, summations, products, matrices, ratios, derivatives,
box
expressions, at
expressions, and absolute value expressions.
Otherwise, the pretty printer uses only ASCII characters to display every kind of expression.
In addition to displaying expressions in console interaction (as %o
labeled expressions),
the 2-d pretty printer is invoked to display expressions for print
,
and printf
with the ~m
format specifier.
Examples:
Expressions displayed by 2-d pretty printer using Unicode drawing characters
(display2d_unicode
equal to true
),
shown as an image:
Same expressions, displayed using only ASCII characters
(display2d_unicode
equal to false
),
shown as an image:
Footnotes:
[1] https://en.wikipedia.org/wiki/Box-drawing_character
Displays expr in parts one below the other. That is, first the operator
of expr is displayed, then each term in a sum, or factor in a product, or
part of a more general expression is displayed separately. This is useful if
expr is too large to be otherwise displayed. For example if P1
,
P2
, … are very large expressions then the display program may run
out of storage space in trying to display P1 + P2 + ...
all at once.
However, dispterms (P1 + P2 + ...)
displays P1
, then below it
P2
, etc. When not using dispterms
, if an exponential expression
is too wide to be displayed as A^B
it appears as expt (A, B)
(or
as ncexpt (A, B)
in the case of A^^B
).
Example:
(%i1) dispterms(2*a*sin(x)+%e^x); + 2 a sin(x) x %e (%o1) done
If an exponential expression is too wide to be displayed as
a^b
it appears as expt (a, b)
(or as
ncexpt (a, b)
in the case of a^^b
).
expt
and ncexpt
are not recognized in input.
Default value: true
When exptdispflag
is true
, Maxima displays expressions
with negative exponents using quotients. See also %edispflag
.
Example:
(%i1) exptdispflag:true; (%o1) true (%i2) 10^-x; 1 (%o2) --- x 10 (%i3) exptdispflag:false; (%o3) false (%i4) 10^-x; - x (%o4) 10
The function grind
prints expr to the console in a form suitable
for input to Maxima. grind
always returns done
.
When expr is the name of a function or macro, grind
prints the
function or macro definition instead of just the name.
See also string
, which returns a string instead of printing its
output. grind
attempts to print the expression in a manner which makes
it slightly easier to read than the output of string
.
grind
evaluates its argument.
Examples:
(%i1) aa + 1729; (%o1) aa + 1729
(%i2) grind (%); aa+1729$ (%o2) done
(%i3) [aa, 1729, aa + 1729]; (%o3) [aa, 1729, aa + 1729]
(%i4) grind (%); [aa,1729,aa+1729]$ (%o4) done
(%i5) matrix ([aa, 17], [29, bb]); [ aa 17 ] (%o5) [ ] [ 29 bb ]
(%i6) grind (%); matrix([aa,17],[29,bb])$ (%o6) done
(%i7) set (aa, 17, 29, bb); (%o7) {17, 29, aa, bb}
(%i8) grind (%); {17,29,aa,bb}$ (%o8) done
(%i9) exp (aa / (bb + 17)^29); aa ----------- 29 (bb + 17) (%o9) %e
(%i10) grind (%); %e^(aa/(bb+17)^29)$ (%o10) done
(%i11) expr: expand ((aa + bb)^10); 10 9 2 8 3 7 4 6 (%o11) bb + 10 aa bb + 45 aa bb + 120 aa bb + 210 aa bb 5 5 6 4 7 3 8 2 + 252 aa bb + 210 aa bb + 120 aa bb + 45 aa bb 9 10 + 10 aa bb + aa
(%i12) grind (expr); bb^10+10*aa*bb^9+45*aa^2*bb^8+120*aa^3*bb^7+210*aa^4*bb^6 +252*aa^5*bb^5+210*aa^6*bb^4+120*aa^7*bb^3+45*aa^8*bb^2 +10*aa^9*bb+aa^10$ (%o12) done
(%i13) string (expr); (%o13) bb^10+10*aa*bb^9+45*aa^2*bb^8+120*aa^3*bb^7+210*aa^4*bb^6\ +252*aa^5*bb^5+210*aa^6*bb^4+120*aa^7*bb^3+45*aa^8*bb^2+10*aa^9*\ bb+aa^10
(%i14) cholesky (A):= block ([n : length (A), L : copymatrix (A), p : makelist (0, i, 1, length (A))], for i thru n do for j : i thru n do (x : L[i, j], x : x - sum (L[j, k] * L[i, k], k, 1, i - 1), if i = j then p[i] : 1 / sqrt(x) else L[j, i] : x * p[i]), for i thru n do L[i, i] : 1 / p[i], for i thru n do for j : i + 1 thru n do L[i, j] : 0, L)$ define: warning: redefining the built-in function cholesky
(%i15) grind (cholesky); cholesky(A):=block( [n:length(A),L:copymatrix(A), p:makelist(0,i,1,length(A))], for i thru n do (for j from i thru n do (x:L[i,j],x:x-sum(L[j,k]*L[i,k],k,1,i-1), if i = j then p[i]:1/sqrt(x) else L[j,i]:x*p[i])), for i thru n do L[i,i]:1/p[i], for i thru n do (for j from i+1 thru n do L[i,j]:0),L)$ (%o15) done
(%i16) string (fundef (cholesky)); (%o16) cholesky(A):=block([n:length(A),L:copymatrix(A),p:makelis\ t(0,i,1,length(A))],for i thru n do (for j from i thru n do (x:L\ [i,j],x:x-sum(L[j,k]*L[i,k],k,1,i-1),if i = j then p[i]:1/sqrt(x\ ) else L[j,i]:x*p[i])),for i thru n do L[i,i]:1/p[i],for i thru \ n do (for j from i+1 thru n do L[i,j]:0),L)
When the variable grind
is true
, the output of string
and
stringout
has the same format as that of grind
; otherwise no
attempt is made to specially format the output of those functions. The default
value of the variable grind
is false
.
grind
can also be specified as an argument of playback
. When
grind
is present, playback
prints input expressions in the same
format as the grind
function. Otherwise, no attempt is made to specially
format input expressions.
Default value: 10
ibase
is the base for integers read by Maxima.
ibase
may be assigned any integer between 2 and 36 (decimal), inclusive.
When ibase
is greater than 10,
the numerals comprise the decimal numerals 0 through 9
plus letters of the alphabet A
, B
, C
, …,
as needed to make ibase
digits in all.
Letters are interpreted as digits only if the first digit is 0 through 9.
Uppercase and lowercase letters are not distinguished.
The numerals for base 36, the largest acceptable base,
comprise 0 through 9 and A
through Z
.
Whatever the value of ibase
,
when an integer is terminated by a decimal point,
it is interpreted in base 10.
See also obase
.
Examples:
ibase
less than 10 (for example binary numbers).
(%i1) ibase : 2 $
(%i2) obase; (%o2) 10
(%i3) 1111111111111111; (%o3) 65535
ibase
greater than 10.
Letters are interpreted as digits only if the first digit is 0
through 9 which means that hexadecimal numbers might need to
be prepended by a 0.
(%i1) ibase : 16 $
(%i2) obase; (%o2) 10
(%i3) 1000; (%o3) 4096
(%i4) abcd; (%o4) abcd
(%i5) symbolp (abcd); (%o5) true
(%i6) 0abcd; (%o6) 43981
(%i7) symbolp (0abcd); (%o7) false
When an integer is terminated by a decimal point, it is interpreted in base 10.
(%i1) ibase : 36 $
(%i2) obase; (%o2) 10
(%i3) 1234; (%o3) 49360
(%i4) 1234.; (%o4) 1234
Displays expressions expr_1, …, expr_n to the console as
printed output. ldisp
assigns an intermediate expression label to each
argument and returns the list of labels.
See also disp
, display
, and ldisplay
.
Examples:
(%i1) e: (a+b)^3; 3 (%o1) (b + a) (%i2) f: expand (e); 3 2 2 3 (%o2) b + 3 a b + 3 a b + a (%i3) ldisp (e, f); 3 (%t3) (b + a) 3 2 2 3 (%t4) b + 3 a b + 3 a b + a (%o4) [%t3, %t4] (%i4) %t3; 3 (%o4) (b + a) (%i5) %t4; 3 2 2 3 (%o5) b + 3 a b + 3 a b + a
Displays expressions expr_1, …, expr_n to the console as
printed output. Each expression is printed as an equation of the form
lhs = rhs
in which lhs
is one of the arguments of ldisplay
and rhs
is its value. Typically each argument is a variable.
ldisp
assigns an intermediate expression label to each equation and
returns the list of labels.
See also display
, disp
, and ldisp
.
Examples:
(%i1) e: (a+b)^3; 3 (%o1) (b + a) (%i2) f: expand (e); 3 2 2 3 (%o2) b + 3 a b + 3 a b + a (%i3) ldisplay (e, f); 3 (%t3) e = (b + a) 3 2 2 3 (%t4) f = b + 3 a b + 3 a b + a (%o4) [%t3, %t4] (%i4) %t3; 3 (%o4) e = (b + a) (%i5) %t4; 3 2 2 3 (%o5) f = b + 3 a b + 3 a b + a
Default value: false
When leftjust
is true
, equations in 2D-display are drawn left
justified rather than centered.
See also display2d
to switch between 1D- and 2D-display.
Example:
(%i1) expand((x+1)^3); 3 2 (%o1) x + 3 x + 3 x + 1 (%i2) leftjust:true$ (%i3) expand((x+1)^3); 3 2 (%o3) x + 3 x + 3 x + 1
Default value: 79
linel
is the assumed width (in characters) of the console display for the
purpose of displaying expressions. linel
may be assigned any value by
the user, although very small or very large values may be impractical. Text
printed by built-in Maxima functions, such as error messages and the output of
describe
, is not affected by linel
.
Default value: false
When lispdisp
is true
, Lisp symbols are displayed with a leading
question mark ?
. Otherwise, Lisp symbols are displayed with no leading
mark. This has the same effect for 1-d and 2-d display.
Examples:
(%i1) lispdisp: false$
(%i2) ?foo + ?bar; (%o2) foo + bar
(%i3) lispdisp: true$
(%i4) ?foo + ?bar; (%o4) ?foo + ?bar
Default value: true
When negsumdispflag
is true
, x - y
displays as x - y
instead of as - y + x
. Setting it to false
causes the special
check in display for the difference of two expressions to not be done. One
application is that thus a + %i*b
and a - %i*b
may both be
displayed the same way.
Default value: 10
obase
is the base for integers displayed by Maxima.
obase
may be assigned any integer between 2 and 36 (decimal), inclusive.
When obase
is greater than 10,
the numerals comprise the decimal numerals 0 through 9
plus capital letters of the alphabet A, B, C, …, as needed.
A leading 0 digit is displayed if the leading digit is otherwise a letter.
The numerals for base 36, the largest acceptable base,
comprise 0 through 9, and A through Z.
See also ibase
.
Examples:
(%i1) obase : 2; (%o1) 10
(%i10) 2^8 - 1; (%o10) 11111111
(%i11) obase : 8; (%o3) 10
(%i4) 8^8 - 1; (%o4) 77777777
(%i5) obase : 16; (%o5) 10
(%i6) 16^8 - 1; (%o6) 0FFFFFFFF
(%i7) obase : 36; (%o7) 10
(%i8) 36^8 - 1; (%o8) 0ZZZZZZZZ
Default value: false
When pfeformat
is true
, a ratio of integers is displayed with the
solidus (forward slash) character, and an integer denominator n
is
displayed as a leading multiplicative term 1/n
.
Examples:
(%i1) pfeformat: false$ (%i2) 2^16/7^3; 65536 (%o2) ----- 343 (%i3) (a+b)/8; b + a (%o3) ----- 8 (%i4) pfeformat: true$ (%i5) 2^16/7^3; (%o5) 65536/343 (%i6) (a+b)/8; (%o6) 1/8 (b + a)
Default value: false
When powerdisp
is true
,
a sum is displayed with its terms in order of increasing power.
Thus a polynomial is displayed as a truncated power series,
with the constant term first and the highest power last.
By default, terms of a sum are displayed in order of decreasing power.
Example:
(%i1) powerdisp:true; (%o1) true (%i2) x^2+x^3+x^4; 2 3 4 (%o2) x + x + x (%i3) powerdisp:false; (%o3) false (%i4) x^2+x^3+x^4; 4 3 2 (%o4) x + x + x
Evaluates and displays expr_1, …, expr_n one after another, from left to right, starting at the left edge of the console display.
The value returned by print
is the value of its last argument.
print
does not generate intermediate expression labels.
See also display
, disp
, ldisplay
, and
ldisp
. Those functions display one expression per line, while
print
attempts to display two or more expressions per line.
To display the contents of a file, see printfile
.
Examples:
(%i1) r: print ("(a+b)^3 is", expand ((a+b)^3), "log (a^10/b) is", radcan (log (a^10/b)))$ 3 2 2 3 (a+b)^3 is b + 3 a b + 3 a b + a log (a^10/b) is 10 log(a) - log(b) (%i2) r; (%o2) 10 log(a) - log(b) (%i3) disp ("(a+b)^3 is", expand ((a+b)^3), "log (a^10/b) is", radcan (log (a^10/b)))$ (a+b)^3 is 3 2 2 3 b + 3 a b + 3 a b + a log (a^10/b) is 10 log(a) - log(b)
Default value: true
When sqrtdispflag
is false
, causes sqrt
to display with
exponent 1/2.
Default value: false
When stardisp
is true
, multiplication is
displayed with an asterisk *
between operands.
Default value: false
When ttyoff
is true
, output expressions are not displayed.
Output expressions are still computed and assigned labels. See labels
.
Text printed by built-in Maxima functions, such as error messages and the output
of describe
, is not affected by ttyoff
.
Next: Data Types and Structures, Previous: Help [Contents][Index]